Student Dave
Student Dave
  • 30
  • 1 901 633
Artificial Intelligence: Machine Learning Introduction
Hello Bayesian Ninjas! A general introduction of machine learning algorithms! happy hunting! The white noise tutorial part was made entirely in MATLAB!
Переглядів: 239 466

Відео

Harlem Shake Ninjas! (Image warping using matlab)
Переглядів 4,1 тис.11 років тому
Couldn't help myself :). Harleem shake made Entirely in Matlab! using image interpolation based upon transforms on mesh rendered (triangulation) images. Tutorial on this soon!
Multi Object Tracking Tutorial: part 4 by Student Dave
Переглядів 20 тис.12 років тому
This is the second part of the image processing in MATLAB for the object tracking. Application of kalman and hungarian algorithm! Visit website for code studentdavestutorials.weebly.com/
Multi Object Tracking Tutorial: part 3 by Student Dave
Переглядів 16 тис.12 років тому
This is the first part of the image processing in MATLAB for the object tracking. Application of blob filter! Visit website for code studentdavestutorials.weebly.com/
Multi Object Tracking Tutorial: part 2 by Student Dave
Переглядів 22 тис.12 років тому
Very simple example of Multi object tracking using the Kalman filter and then Hungarian algorithm. Visit website for code studentdavestutorials.weebly.com/
Multi Object Tracking Tutorial: part 1 by Student Dave
Переглядів 33 тис.12 років тому
Very simple example of Multi object tracking using the Kalman filter and then Hungarian algorithm. Visit website for code studentdavestutorials.weebly.com/ if you would like get those lil bugs, www.hexbug.com/nano/
Multi Object Tracking Tutorial: Gratuitous Matlab-based Introduction
Переглядів 13 тис.12 років тому
Hi! Interested in MULT-OBJECT TRACKING? Or, just bored, and wanna experience a gratuitous use of Matlab :-/. either way, check out this video and the following tutorials on how to make you own. Enjoy and submit your own code to the website! studentdavestutorials.weebly.com/ Explosion video graciously provided by MC5Productions channel (thx!) Music provided by the awesome teknoaxe channel (thx!)...
Video of Santa's Flight Path Around the World using Genetic Algorithms in MATLAB
Переглядів 17 тис.12 років тому
A video showing an approximately "optimal" flight path Santa would take to minimize his travels around the world over 200 countries! It is solved using a genetic algorithm (GA) and is fully rendered in MATLAB. The following tutorial explains how GA's work and here a link to the code. enjoy! studentdavestutorials.weebly.com/traveling-santa-claus-genetic-algorithm-solutions.html
Solving the traveling Santa Claus problem with Genetic Algorithm: Tutorial by Student Dave
Переглядів 21 тис.12 років тому
In the previous video I show the "optimal" shortest path Santa Claus would use to visit every country in the world. Here, I show how I did it using Genetic Algorithms and give you the code so you can do it yourself, and probably much better! enjoy! Code here: studentdavestutorials.weebly.com/ check out the lil bugs i used (hexbug nanos!) here!: www.hexbug.com/nano/
Object tracking with 2D Kalman Filter part 1: Matlab implimentation by Student Dave
Переглядів 64 тис.12 років тому
Tutorial on how to tracking an object in a image using the 2-d kalman filter! matlab code and more can be found here! studentdavestutorials.weebly.com/ if you like those bugs i'm using, check em out here www.hexbug.com/nano/
Object tracking with 2D Kalman Filter part 2: Matlab implimentation by Student Dave
Переглядів 47 тис.12 років тому
This code implements a 2-d tracking of object in an image with kalman filter matlab code and more can be found here! studentdavestutorials.weebly.com/ if you like those bugs i'm using, check em out here www.hexbug.com/nano/ this tutorial features MATLAB® programming language, go here of you wanna get it :) www.mathworks.com/products/matlab/
Image Processing tutorial part 2: Basic object tracking tutorial by Student dave
Переглядів 25 тис.12 років тому
matlab implementation of object tracking using basic image processing techniques matlab code and more can be found here! studentdavestutorials.weebly.com/ if you like those bugs i'm using, check em out here www.hexbug.com/nano/ this tutorial features MATLAB® programming language, go here of you wanna get it :) www.mathworks.com/products/matlab/
Image Processing tutorial part 1: Basic object tracking tutorial by Student dave
Переглядів 91 тис.12 років тому
A tutorial on very basic image processing for object tracking matlab code and more can be found here! studentdavestutorials.weebly.com/ if you like those bugs i'm using, check em out here www.hexbug.com/nano/
Particle Filter Tutorial With MATLAB Part 1: Student Dave
Переглядів 87 тис.12 років тому
Get code on website! studentdavestutorials.weebly.com/ Hi world! This tutorial is on the particle filter. A tool for modeling a changing system with non linearities
Particle Filter Tutorial With MATLAB Part 2: Student Dave
Переглядів 38 тис.12 років тому
Get code on website! studentdavestutorials.weebly.com/ Magical Quails vs Frequentisian ninjas! This video continues the tutorial on the particle filter :). Part 2
Particle Filter Tutorial With MATLAB Part3: Student Dave
Переглядів 51 тис.12 років тому
Particle Filter Tutorial With MATLAB Part3: Student Dave
Markov Chain Matlab Tutorial--part 1
Переглядів 58 тис.12 років тому
Markov Chain Matlab Tutorial part 1
Markov Chain Matlab Tutorial--part 3
Переглядів 19 тис.12 років тому
Markov Chain Matlab Tutorial part 3
Markov Chain Matlab Tutorial--part 2
Переглядів 26 тис.12 років тому
Markov Chain Matlab Tutorial part 2
Markov Chain Matlab Bayesian Dojo!
Переглядів 19 тис.12 років тому
Markov Chain Matlab Bayesian Dojo!
Monte Carlo with Matlab: Part 2 Student Dave's Tutorials
Переглядів 47 тис.12 років тому
Monte Carlo with Matlab: Part 2 Student Dave's Tutorials
Monte Carlo with Matlab: Part 1 Student Dave's Tutorials
Переглядів 57 тис.12 років тому
Monte Carlo with Matlab: Part 1 Student Dave's Tutorials
Student Dave's Matlab-based Math tutorials: We're back!
Переглядів 1,1 тис.12 років тому
Student Dave's Matlab-based Math tutorials: We're back!
Tutorial: Kalman Filter with MATLAB example part3
Переглядів 151 тис.13 років тому
Tutorial: Kalman Filter with MATLAB example part3
Tutorial: Kalman Filter with MATLAB example part2
Переглядів 177 тис.13 років тому
Tutorial: Kalman Filter with MATLAB example part2
Tutorial: Kalman Filter with MATLAB example part1
Переглядів 379 тис.13 років тому
Tutorial: Kalman Filter with MATLAB example part1
Tutorial: recursive Bayes with MATLAB example part3, by Student Dave
Переглядів 31 тис.13 років тому
Tutorial: recursive Bayes with MATLAB example part3, by Student Dave
tutorial: recursive bayes with MATLAB example part2, by Student Dave
Переглядів 28 тис.13 років тому
tutorial: recursive bayes with MATLAB example part2, by Student Dave
tutorial: recursive bayes with MATLAB example part1, by Student Dave
Переглядів 57 тис.13 років тому
tutorial: recursive bayes with MATLAB example part1, by Student Dave
Bayes Theorem introduction: by Student Dave
Переглядів 65 тис.13 років тому
Bayes Theorem introduction: by Student Dave

КОМЕНТАРІ

  • @DantheAgario
    @DantheAgario Рік тому

    Are you still alive?

  • @abhisheksaini5217
    @abhisheksaini5217 Рік тому

    This is an excellent explanation of the recursive Bayesian method. Thank you very much, sir.

  • @bushraraza5169
    @bushraraza5169 2 роки тому

    I want to estimate position in xyz direction using 3 axis accelerometer data in MATLAB. Suggest me how can I modify your code in this regard?

  • @leetsuyian20
    @leetsuyian20 2 роки тому

    Very helpful!! thank you

  • @vitorhugo1723
    @vitorhugo1723 2 роки тому

    Man your micro need a Kalman Filter

  • @marvinnuer573
    @marvinnuer573 2 роки тому

    Does anyone here know why I cannot see values when I try to evaluate x_P? It says "Unrecognized function or variable 'x_P'."

  • @romitjivani4367
    @romitjivani4367 2 роки тому

    PF Start at: 1:00

  • @maheshmulimani4781
    @maheshmulimani4781 2 роки тому

    Hi Dave. Your videos are wonderful and explain cleanly the implementation part. I have a question regarding the Particle filter. If one has time series data of a variable x upto time T, can one be able to predict x after T, i.e., T+1, T+2, etc... using Particle Filter? In a way can the Particle Filter learn the dynamics on its own without providing an explicit model dynamics to it?

  • @alibhdar968
    @alibhdar968 2 роки тому

    hi

  • @Amhara632
    @Amhara632 2 роки тому

    u need transition for your self to make vedio

  • @SamWane
    @SamWane 3 роки тому

    Fantastic, laid back, cool and informative

  • @homataha5626
    @homataha5626 3 роки тому

    I love you!

  • @nklebiscorner664
    @nklebiscorner664 3 роки тому

    Thank you very much for the tutoriel ! I have a question for which i have been solving since a while now. In fact in your likelihood calculation, it is not trivial to have this simple calculation of weights when using complex models. For example, imagine that my standard deviation of measurement error is 0.1 it means in your code X_R=0.01. Imagine that my real z is 10 and my z_update=35 ( it's not that far isn't it?) . If i calculate the likelihood it will be 0, and if i have 10 particles which they give me a z_update around 35 , it means that all my weights will be 0 and when i normalize i cannot divide by the sum(weights= which is equal to 0 ? can you help on this question please ( knowng that my measure error is not that high std_measure=0.1)? thanks to anyone who can answer this question ;)

  • @chadx8269
    @chadx8269 3 роки тому

    If they wearing all black with skinny jeans and look like an emaciated white trans boy in Portland I know its Aunt Tea Fa. Don't need Bayes for that.

  • @tehreemtariq8064
    @tehreemtariq8064 3 роки тому

    Hi please reply to my email

  • @daospina3
    @daospina3 3 роки тому

    I love you <3... Thank you very much!

  • @brianblasius
    @brianblasius 3 роки тому

    Thank you student Dave

  • @VinhA
    @VinhA 3 роки тому

    Here I am, in 2021, watching this video. The face you draw in the beginning of the video reminds me the corona virus ahahah

  • @amiysrivastava8032
    @amiysrivastava8032 3 роки тому

    Bi Dave...I am getting this error...Undefined function or variable 'extrema2'...can you help me with this?

  • @luckymiyukin9388
    @luckymiyukin9388 3 роки тому

    The main problem with this video is that if Santa were to take off when the first Russian time zone hits midnight (Around 6 AM US Eastern Time on Christmas Eve), he would be in the United States during broad daylight A better approach may be to treat it as though Santa is traveling from time zone to time zone, rather than from country to country. That way, each place gets visited during the night

  • @sayershad
    @sayershad 3 роки тому

    If square is in circle how to plot

  • @souravde6116
    @souravde6116 3 роки тому

    I like the Students Dave UA-cam channel because it boils down every tough concept to a simpler one with easy language and pleasant demonstration. Keeping doing this novel task dude.

  • @rahul122112
    @rahul122112 3 роки тому

    A quick question for you @Student Dave or anyone else who can help me with it: Where do the sensor measurements come in? I see that at 3:30 P_w(i) uses "z - z_update(i)" Now z is the mean measurement estimated by the measurement model, and z_update(i) is the measurement estimate with respect to each particle obtained again from the measurement model. So... where does the filter use the information recorded by a sensor, lets say a lidar or maybe an odometer?

  • @jp-hh9xq
    @jp-hh9xq 3 роки тому

    I have seen before, watched again. Awesome video! I am very well versed in Kalman Filters, which is hard to explain to others. Your video helps a lot!

  • @reelslover3375
    @reelslover3375 4 роки тому

    Sir please provide the code

  • @henryalferink1941
    @henryalferink1941 4 роки тому

    I don't understand how the sensor prediction would be a function of the state prediction. Wouldn't the two be independent of each other? Edit: I now see that there's a difference between the sensor prediction and actual sensor data. But I'm still unsure about what the sensor prediction actually is. Would it oftentimes just be assumed to be the state prediction plus some error (i.e. that C is the identity)? E.g. in this case you might just be assuming that your GPS data is centered on the state prediction, but with some additional error. Am I correct in my understanding? Thanks for the vid. Very good explanation overall!

  • @williamsutherland1326
    @williamsutherland1326 4 роки тому

    assignmentoptimal.m is found www.mathworks.com/matlabcentral/mlc-downloads/downloads/submissions/46848/versions/3/previews/assignmentoptimal.m/index.html ---or--- www.mathworks.com/matlabcentral/fileexchange/6543-functions-for-the-rectangular-assignment-problem

  • @tycho-bro-hey
    @tycho-bro-hey 4 роки тому

    your hypothesis is outdated. us hipsters like to drink pee and poop straight from the tap

  • @CheckBackfocus
    @CheckBackfocus 4 роки тому

    Awesome work. Fantastic explanation.

  • @rajabmur4311
    @rajabmur4311 4 роки тому

    thank you sir, I have sent you an email to the one you provided on the website but no answer till now, i would like to get the code if that possible, thank you

  • @jamesmadutlela8715
    @jamesmadutlela8715 4 роки тому

    Great tut thanks

  • @pedrovelazquez138
    @pedrovelazquez138 4 роки тому

    Thank you!

  • @ItsNotAllRainbows_and_Unicorns
    @ItsNotAllRainbows_and_Unicorns 4 роки тому

    The dilemma, to hunt or hug a quail.

  • @abhishekdhiman5719
    @abhishekdhiman5719 4 роки тому

    watching 2020 anyone?

  • @jaldeepkaneria4104
    @jaldeepkaneria4104 4 роки тому

    how the state update and measurement update equations (x_out, z_out) build? is this equation may get change according to sensors that we used in our system?

  • @ruipinheiro8260
    @ruipinheiro8260 4 роки тому

    Could you add proper subtitles? As a Deaf person I struggle a bit following the automatic captions. Note that you can use UA-cam features to get the automatic captions already with the start/end times and do a quick grammar and punctuation revision, as well as fix technical terms that are rarely got right. That would help a lot in understanding what is being taught. Thank you!

  • @איתמרברציון
    @איתמרברציון 4 роки тому

    Thank you !

  • @adrianlamoralcoines8373
    @adrianlamoralcoines8373 4 роки тому

    Holy fuck, this is how monsters in monster hunter attack me using their moveset

  • @rounaksingh5473
    @rounaksingh5473 4 роки тому

    That was a great tutorial!! Can you please send me the code? email: singh369117@gmail.com

  • @gearstil
    @gearstil 4 роки тому

    I know it passed 9 years, but how do you choose the K covariance matrix?

  • @djtiner1
    @djtiner1 4 роки тому

    Everyone: Kalman filter. automatically generated subtitles: Calm on filter.

  • @ahasanunnessa3962
    @ahasanunnessa3962 4 роки тому

    Thank you Dave. You explained everything very clearly. It is beneficial for beginners.

  • @oldcowbb
    @oldcowbb 4 роки тому

    a guy call himself student but teach better than professors

  • @oldcowbb
    @oldcowbb 4 роки тому

    "they are student, they are very linear" wow, that hurts

  • @kamelismail9943
    @kamelismail9943 4 роки тому

    I rarely comment on UA-cam but man you did an amazing job ! Better than a lot of boring and lengthy reference books !

  • @hamzazwairy7075
    @hamzazwairy7075 4 роки тому

    you REALLY sound like Jonah Hill from 21 jump street lol..

  • @vivekgr3001
    @vivekgr3001 4 роки тому

    excellent, especially setting up the matrices

  • @chinaguy101
    @chinaguy101 4 роки тому

    oh my god, this is a extremely clear and good explanation, thank you very much for sharing!

  • @MrCentrax
    @MrCentrax 4 роки тому

    really great introduction, I finally learned the differences between supervised and unsupervised learning

  • @madhavendrabhatnagar80
    @madhavendrabhatnagar80 4 роки тому

    Excellent description of Particle Filter with real time application and matlab demonstration.